Computationally Efficient Statistical Face Model
in the Feature Space

Mohammad Haghighat
Department of ECE
College of Engineering
University of Miami
Coral Gables, FL, USA
Email: haghighat@umiami.edu

Mohamed Abdel-Mottaleb
Department of ECE
College of Engineering
University of Miami
Coral Gables, FL, USA
and Adjunct, Effat University

Wadee Alhalabi
Department of CS
College of Engineering
Effat University
Jeddah, Saudi Arabia
Email: walhalabi @effatuniversity.edu.sa

Email: mottaleb@miami.edu

Abstract—In this paper, we present a computationally efficient
statistical face modeling approach. The efficiency of our proposed
approach is the result of mathematical simplifications in the core
formula of a previous face modeling method and the use of the
singular value decomposition. In order to reduce the errors in our
resulting models, we preprocess the facial images to normalize
for pose and illumination and remove little occlusions. Then, the
statistical face models for the enrolled subjects are obtained from
the normalized face images. The effects of the variations in pose,
facial expression, and illumination on the accuracy of the system
are studied. Experimental results demonstrate the reduction in
the computational complexity of the new approach and its efficacy
in modeling the face images.

I. INTRODUCTION

Biometric identification has been one of the challenging
topics in computer vision for the past few decades. Changes in
the biometric images due to changes in pose, illumination and
occlusion make the biometric recognition a stochastic problem.
In order to better analyze a stochastic process, one needs
statistical models. Statistical modeling provides a formulation
to understand how a group of random variables are similar
to each other or how they are different from other groups
of variables. The face images of an individual subject are
similar to each other and different from the face images of
other subjects. However, face images of an individual are
not exactly the same either. Changes in illumination, head
pose, facial expressions and cosmetics as well as aging and
occlusions, change the appearance of the face. Fig. 1 clearly
illustrates these variations for a single subject. The question
is how these changes are different from the changes between
different subjects.

Defining a deterministic model for the face is not suitable
because of the changes mentioned above. These changes create
difficulties even for stochastic models. However, normalization
can be used in a preprocessing step to reduce the effect of some
of these changes.

The well known Active Shape Model (ASM) [1] has been
widely used for face modeling. Training the ASM requires a
large number of facial images where the feature points are
manually labeled. By analyzing the statistics of the locations
of the labeled points from a large set of facial images, a point
distribution model is built. The model consists of the average

Fig. 1.

Changes in the face images of an individual.

locations of the points and some parameters that control the
changes in the training set. This approach was later improved
by Edwards et al. in [2]-[4]. It also inspired Lanitis et al. [5]
to create an aging function of the model to study aging effects
on face images.

In this paper, we present a statistical model for face
images in the feature space. Our modeling approach is more
computationally efficient than the one in [1], [5] and works
in the feature domain. The reduction in the computational
complexity comes not only from the use of singular value
decomposition (SVD) in the eigendecomposition process, but
also from simplifying the modeling equations of [1] and
[5]. In order to build a more accurate model, we present
a fully automatic preprocessing approach which is capable
of removing noise and small occlusions and normalizes for
illumination and in-plane rotations of the face. We also study
the effect of the variations in pose, facial expression, and
illumination on the accuracy of the system.

This paper is organized as follows. Section II describes our
face normalization technique as a preprocessing step before
face modeling. Section III presents our proposed method for
face modeling. The implementation details and experimental
results are presented in Section IV. Finally, Section V con-
cludes the paper.

II. PREPROCESSING FOR FACE NORMALIZATION

In this section, we present a preprocessing approach, which
is capable of normalizing the facial images for pose and
illumination and removing little occlusions.



A. Pose Normalization

Pose variations cause major problems in real-world face
recognition systems. Since the human face is approximately
symmetric, if it is in frontal pose with no rotations and
occlusions, the matrix containing the face image (F) will have
the lowest rank. In order to normalize a rotated face, we
employ transform invariant low-rank textures (TILT) method
proposed by Zhang et al. in [6].

If we model little occlusion or noise with an error matrix,
E, TILT tries to find a transformation (Euclidean, affine, or
projective) matrix, T, such that Fot=F—+E, where F is the
original face image and F is the corrected low-rank face image,
which corresponds to the frontal face. This equation is solved
by the following optimization problem:

Irvnér% rank(F)+Y||E||, st. Fot=F+E (1)
where ||E||, is the /°-norm of the error matrix, i.e., number of
non-zero elements. It actually looks for the F* with the lowest
possible rank and the error with the lowest number of non-zero
elements, which satisfy the above condition. y trades off the
rank of the matrix with the sparsity of the error.

Optimizing the rank function and the /°-norm in the above
equation is very difficult. Therefore, they are substituted by
their convex surrogates. Since the rank of a matrix is equal to
the number of its non-zero singular values, we can substitute
the rank(F) by its nuclear norm ||F||., which is the sum of
its singular values. On the other hand, [%-norm is substituted
by I'-norm, which is the sum of the absolute values of the
elements of the matrix.

Another problem with the above equation is that the con-
straint, F ot = F +E, is not linear. This problem is solved by
linearizing the constraint around its current estimate, which is
updated in an iterative process. [7]. With these approximations,
the optimization problem turns into:

min  ||F|[. +Y||E||i st Fot+VEAT=F+E (2)
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where V is the Jacobian.

We modified the above algorithm to be more suitable for
face images. The TILT code, kindly provided by the authors
[8], requires the user to specify the texture area manually.
However, in case of face images, we modified the code so that
the reigon of interst is automatically extracted by Viola-Jones
face detection method [9]. On the other hand, our experiments
show that the forehead hairline misleads the TILT algorithm
since the hairline is not necessarily horizontal. Therefore, we
trained the Viola-Jones face detector to restrict the face area
vertically between the upper side of the eyebrows and the
lower lip, and horizontally between the two cheeks. Another
advantage of this restriction is that it reduces the background
in the extracted region of the face.

Figure 2 shows the results of TILT on some rotated face
images from CMU frontal face images database [10]. In this
paper, we also restrict the transformation matrix, T, to be
Euclidean. Based on our experiments, affine and projective
transformations do not work well in normalizing face images.
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Fig. 2. Pose correction using TILT. Top rows: original face images with
rotations (F); Bottom rows: corrected face images (F).

B. Illumination Normalization

Another major problem that affects face recognition is the
illumination variations. To reduce this effect, we normalize
the face images using a method based on Weber’s Law
proposed in [11]. When in a quiet room, one can hear a
whispered voice, however, in a noisy place one may not even
hear a shouting. The German physician Ernst Heinrich Weber
proposed Weber’s law based on this phenomenon. He assumed
that the ratio between the smallest noticeable change in a
stimulus and the original level of the stimulus is constant [12]:

ASmin
S

where k is called the Weber fraction. Weber’s law is almost true
for different types of stimuli such as light and sound intensity.
It states that stimuli perception is not based on the absolute
value of the change in the intensity, but rather is based on the
relative change of the intensity level of the stimuli with respect
to the original level.

Weber local descriptor (WLD) in a 3 x 3 neighborhood
of the face image is defined as the ratio of the difference in
intensity between the current pixel and its neighbors to the
intensity of the current pixel [13]:

F(X,y)—F()C—Ly—i)
Flx.y) ) @

where o is an adjusting parameter for the intensity difference
between neighboring pixels, and the arctangent function is used
to reduce the effect of noise by preventing the output from
being too large.
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Based on the Lambertian reflectance model, a face image
F(x,y) can be factorized as:

F(x7y> :R(x’y)l(xay) )

where R(x,y) and I(x,y) are the reflectance and illuminance
factors at pixel (x,y). R is the illumination insensitive part,
which depends only on the characteristics of the facial surface



Fig. 3.

Ilumination normalization using Weber-Face.

including the surface texture (albedo) and the surface normal
(i.e., 3D shape).

From equation 5, we have:

F(x_iay_i):R(x_iuy_i)l(x_iay_i)‘ (6)

The illuminance factor I(x,y) usually varies very slowly
between adjacent pixels. Therefore, we assume

I(x_lay_l)zl(xﬂy) (7)
By substituting Equations 5, 6, and 7 into 4, we obtain:

R(x,y) —R(x—1i,y—i)
i:;LO,l R(x,y) ) ®

which shows that &(x,y) depends only on the reflectance factor
and can be treated as the illumination insensitive representation
of the face image. &, defined in Equation 4, is called Weber-
face which is used in our experiments as the normalized face
image. Fig. 3 shows some examples of the normalized face
images using Weber-face.

E(x,y) = arctan ((x

III. STATISTICAL FACE MODEL

In the proposed approach, the statistical face models are
generated using the feature vectors extracted from the images
of the enrolled subjects. Lets assume that we have n training
samples and we extract feature vectors of length d from each
sample. We subtract the mean feature vector from each of
the feature vectors and put the resulting vectors in a d by n
matrix X. The methods presented in [1] and [5] compute the
eigenvectors by applying principal component analysis (PCA)
to XX7: ,

(XX )( ) T }‘(dxd)v(dxd) : ©)

The eigenvector matrix, V, plays the role of a projection

matrix, P, that can reconstruct each training sample, X;, from
a vector of weights, b;, called model parameters:

X =P b . (10)

(dxn) (dxd)” (dxn)

dxd) ‘/(dxd

Model parameters are calculated by solving the above

equation for all training samples:

b Pl x (11)

(@xn) — Caxaydxn) *

If the number of features is higher than the number of
samples (d > n), it is computationally easier to calculate the
covariance matrix as (X7 X) rather than (XXT) The

X T (nxn) (dxd)*
eigenvectors, U(m)’ of this matrix are defined as follows:
x'x), U AU

(nxn) (nxn): (nxn) ~ (nxn) *

12)

where A is a diagonal matrix containing the eigenvalues. If we
multiply the above equation by X from the left hand side, we
obtain:
xXT XU =A XU . (13)
~—~ ~—

where XU is the matrix of eigenvectors of the covariance
matrix XXT. If we select the r significant eigenvectors cor-
responding to the r largest eigenvalues, the projection matrix
will be:

P(d><r) = X(dxn) U(nxr) ) (14)
and from Equation 10
X(dxn) = P(dxr)b(rxn) : s)

However, since P is not a square matrix, in order to calculate
model parameters from Equation 11, we will use the left
pseudoinverse of the eigenvectors matrix:

b =P X . (16)

(rxn) (rxd)”" (dxn)

Left pseudoinverse of a full rank matrix is defined as:
Pi=(PTP)~'pT. 17)

Substituting Equation 14 into 17 and considering Equation 12,
the above equation reduces to:

Pl =wTxTxu)'vTxT =vTa'yuT xT. (18)
—— —~—
AU 1

Note that since X7 X is symmetric positive definite, its eigen-
vectors are orthogonal, i.e., U ' — y-1. Therefore:

PT=u"\'xT. (19)
Substituting in Equation 16, we obtain

bn = UravxTx. (20)
If we multiply this equation by an identity matrix, I, =
UUT, we obtain the following simplified equation for calcu-
lating the model parameters:
Dy = v 'xTxuut =uT . (1)
—— (rxn)

(rxn

AU

Therefore, the above equation shows that the model parameters
can be easily calculated by the transpose of the matrix of the
significant eigenvectors.

We use singular value decomposition (SVD) to calculate
UT. Using SVD is numerically more efficient than eigende-
composition using PCA. It does not require the formation
of XTX matrix, which is not only computationally expensive
but also can cause loss of precision [14], [15]. As Equation



22 shows, UT is extracted easily from the singular value
decomposition of matrix X:
X =v ¥ yr . (22)

(dxn) (dxd)=(dxn) = (nxn)

Now, we have model parameters, b;, for all the enrolled
samples. Since each enrolled subject might have multiple
samples, the statistical model of a subject is obtained by
computing the centroid of the model parameters of the training
samples of that subject.

Given a query sample, we first normalize the face image
and compute its statistical model parameters using Equation
16:

.

— i
b(r><l) - P(yxd)X(dxl) ’ (23)
where P' is calculated using Equation 19. The query sample
is then classified as the nearest neighbor based on the distance
between the query’s model and the models of the subjects in
the gallery.

The algorithm in [1] and [5] has four expensive steps:
1) calculating the covariance matrix XX7, 2) applying the
eigendecomposition using PCA, 3) inverting the eigenvector
matrix, and 4) calculating the model parameters using Equation
11. However, our algorithm just applies the singular value
decomposition on matrix X, which is significantly faster to
calculate. Furthermore, since our algorithm does not require
the matrix inversion step, it avoids the problems that arise
with singular matrices in the so-called small sample size (SSS)
scenarios, where the number of available samples is smaller
than the dimensionality of the feature space.

Note that the selection of r is a degree of freedom for the
designer and it can be defined, considering the reconstruction
error, as [16]:

Yiahi

Yii A
where A;s are sorted in a descending order and ¢ is the total
number of non-zero eigevalues, i.e., the rank of matrix X.

(24)

erec =1

IV. EXPERIMENTAL RESULTS

The performance of our proposed model was evaluated
using the Facial Recognition Technology (FERET) database
[17]. There are only 200 subjects in FERET database who have
images with pose, expression, and illumination variations. In
our experiments, 1400 face images for these 200 subjects were
selected, i.e., seven images per subject. Three of the images are
frontal faces with different facial expressions and illumination.
These images are letter coded as ba, bj, and bk. The other four
images are faces in different poses with +25°, +15°, —15°,
and —25° degrees of rotation. These images are letter coded
as bd, be, bf, and bg, respectively.

Viola-Jones face detection method [9] was used to extract
the face regions from the images. The first row of Fig. 4 shows
the face detection results for a sample set of images of one
subject from the database. The results of pose and illumination
normalization of these face images are shown in the second
and third rows, respectively. The size of the face images used
in our experiments is 120 x 120 pixels.

(ba) (bd) (be) (bf) (bg) (bj) (bk)

Fig. 4. Face samples of a subject from FERET database (first row). Results
of the pose correction (second row). Illumination normalization (third row).

TABLE 1. RECOGNITION RATES OF THE PROPOSED METHOD IN
CONFRONTATION WITH DIFFERENT FACE DISTORTIONS.

[ Code [ Description

Recognition Rate |

bd +25° pose change 93.50 %
be +15° pose change 99.00 %
bf —15° pose change 99.50 %
bg —25° pose change 96.50 %
bj Alternative expression | 95.50 %
bk Different illumination | 99.50 %

After normalizing the face images, we extract the Gabor
wavelet features to construct the feature vectors [18], [19].
Here we used forty Gabor filters in five scales and eight
orientations. Since the adjacent pixels in an image are usually
highly correlated, we can reduce this information redundancy
by downsampling the feature images that result from Gabor
filters [20]. In our experiments, the feature images were
downsampled by a factor of four. That is, the length of each
feature vector, X;, is d = (120 x 120) x (5% 8)/(4 x4) = 36000.
After applying whitening transform on all the feature vectors,
to have zero mean and unit variance, the model parameters are
calculated using the proposed technique.

Two different experiments were performed on the database.
In the first one, we obtained the face models from only one
frontal face image of each subject. The frontal face image
with neutral expression, labeled ba, was used for enrollment
and obtaining the model parameters. The remaining six images
with different poses, expressions, and illumination were used
for testing. Fig. 5 shows the recognition accuracy based on the
proposed model for different number of features. Each of the
plots corresponds to one of the letter coded sets of images, as
shown in Fig. 4 in FERET database, used for testing.

The maximum recognition accuracy, over the number of
features, for each set is shown in Table I. It is obvious that the
proposed face model copes very well with small pose changes
and variations in illumination. However, the accuracy decreases
in cases of large pose changes and facial expression variations.
For the purpose of comparison, the maximum accuracy of the
algorithm without any preprocessing is shown in Table II.

In the second experiment, we use four samples to enroll
each subject and compute the model parameters, then evaluate
the recognition results using the remaining three samples.
In order to have more accurate results, a seven-fold cross
validation is applied. Fig. 6 and Table III show the recognition
rate of the proposed approach in case of different prepro-
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Fig. 5. Face recognition using different face poses, expresions and illumi-
nation. Legends are the letter codes of the database described in Table I and
Fig. 4.

TABLE II. RECOGNITION RATES OF THE PROPOSED METHOD USING
GABOR FEATURES OF THE RAW FACE IMAGES WITH NO PREPROCESSING.

[ Code [ Description | Recognition Rate |
bd +25° pose change 88.00 %
be +15° pose change 98.00 %
bf —15° pose change 98.50 %
bg —25° pose change 86.00 %
bj Alternative expression | 95.00 %
bk Different illumination | 97.50 %

cessing methods. It is clear that both illumination and pose
normalizations increase the recognition accuracy of the system
when applied separately. The results are further improved when
applying them together.

We compared the processing time of our modeling algo-
rithm with that of the algorithm in [1] and [5]. For an X matrix
of size 1400 x 36000, the algorithm in [1] and [5] takes 54.85
seconds, while our proposed algorithm, takes 20.08 seconds,
averaged over multiple runs.

V. CONCLUSION

In this paper, we presented a computationally efficient
statistical face model by applying mathematical simplifications
to the core formula of a previously proposed face modeling
approach. The proposed method works in the feature domain
and has a proven computational improvement in comparison
with a previously proposed statistical face modeling approach.
Before modeling, we preprocess the face images to normalize
for pose and illumination. Experimental results demonstrated
the computational efficiency and robust performance of our
proposed model on FERET database. In the future, we will
address the issue of how to enhance the performance of the
model in cases of larger pose variations and changes in facial
expressions.
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